Министерство науки и высшего образования Российской Федерации федеральное государственное автономное образовательное учреждение высшего образования «Санкт-Петербургский политехнический университет Петра Великого»

УТВЕРЖДАЮ

Председатель предметной экзаменационной комиссии

Бајериове Ю.Г. Базарнова «27» СЕТЕТРІЗ 2023 г.

ПРОГРАММА

ВСТУПИТЕЛЬНОГО ИСПЫТАНИЯ «ХИМИЯ»

для поступающих на обучение по образовательным программам высшего образования - программам бакалавриата

Xuu

Аннотация

Программа вступительного испытания «Химия» разработана для организации и проведения вступительных испытаний абитуриентов, закончивших средние общеобразовательные школы (СОШ), по приему на обучение по программам бакалавриата в Санкт-Петербургский политехнический университет Петра Великого и сформирована на основе Федерального государственного образовательного стандарта основного общего образования с учетом соответствия уровню сложности ЕГЭ по данному предмету.

Программа содержит требования к результатам образования, сформированным у абитуриента в результате изучения предмета «Химия» в СОШ, а также основные разделы предмета для подготовки к вступительным испытаниям и список рекомендуемой литературы.

На вступительном испытании разрешено использовать калькулятор и справочные материалы.

Требования к результатам образования абитуриента по предмету «Химия»:

В результате освоения предмета «Химия» абитуриент должен знать важнейшие химические понятия, законы и теории, в том числе:

- основные понятия и законы химии;
- теоретические основы общей химии, химии элементов и органической химии;
- классы неорганических и органических соединений и их химические свойства;
- классификацию химических реакций и закономерности их протекания;
- основы химии равновесных процессов;
- окислительно-восстановительные реакции, реакции ионного обмена;
- основы теории растворов, процессы ионного обмена, типы гидролиза солей,
- основы термохимии и химической термодинамики;

В результате освоения предмета «Химия» абитуриент должен уметь использовать основополагающие химические понятия, теории, законы и закономерности, в том числе:

- уверенно пользоваться химической терминологией и символикой;
- производить количественные расчеты с использованием основных законов химии;
- проводить стехиометрические расчеты по уравнениям химических реакций;
- производить количественные расчеты с использованием термохимических уравнений;
- производить количественные расчеты концентрации растворов и растворимости;
- классифицировать органические вещества и реакции по различным признакам.

Основные разделы предмета для подготовки к вступительным испытаниям

Раздел 1. Основные понятия и основные стехиометрические законы химии

1.1. Химический элемент, атом, молекула, изотопы, электрон. Простые и сложные вещества. Аллотропия. Относительная атомная и относительная молекулярная масса.

- 1.2. Закон сохранения массы. Количество вещества. Молярная масса. Изотопы. Закон постоянного состава. Закон Авогадро и его следствия. Молекулярный объем. Число Авогадро. Относительная плотность газа.
- 1.3. Стехиометрические расчеты по химическим формулам и уравнениям.

Раздел 2. Строение атома. Периодический закон и периодическая система элементов Д.И. Менделеева

- 2.1. Строение атома. Атомная орбиталь. Распределение электронов по орбиталям. Электронная конфигурация атома. Валентные электроны. Основное и возбужденное состояние атомов.
- 2.2. Периодический закон Д.И. Менделеева и периодическая система элементов, как выражение периодического закона. Связь периодической системы со строением атомов. Структура периодической системы. Свойства химических элементов на основе положения в периодической системе.

Раздел 3. Классы неорганических соединений

- 3.1. Оксиды, их классификация. Основные, амфотерные и кислотные оксиды. Химические свойства оксидов, способы получения.
- 3.2. Гидроксиды металлов, их классификация. Общие способы получения и химические свойства. Амфотерные гидроксиды.
- 3.3. Кислоты, их классификация. Химические свойства кислот, общие способы получения. Реакции нейтрализации.
- 3.4. Соли, их классификация. Средние, кислые и основные соли. Номенклатура солей. Общие способы получения и их химические свойства.
- 3.5. Основы качественного анализа. Качественные реакции на неорганические вещества и ионы. Качественные реакции отдельных классов органических соединений.

Раздел 4. Химическая связь и строение молекул

- 4.1. Классификация химических связей. Ковалентная связь, механизмы образования. Гибридизация орбиталей в молекуле (-sp; -sp²; -sp³).
- 4.2. Понятие об электроотрицательности. Валентность и степень окисления.
- 4.3. Ионная связь как предельный случай полярной ковалентной связи.
- 4.4. Металлическая связь. Водородные связи. Типы кристаллических решеток.

Раздел 5. Основы теории растворов. Диссоциация в растворах электролитов.

- 5.1. Электролитическая диссоциация. Сильные и слабые электролиты. Константа и степень диссоциации.
- 5.2. Реакции ионного обмена. Кислотно-основное взаимодействие в растворах. Амфотерность. Водородный показатель (рН среды).
- 5.3. Гидролиз солей. Ионно-молекулярные уравнения реакций гидролиза солей.
- 5.4. Способы выражения концентрации растворов и содержания компонентов в смеси: массовая доля (процентная концентрация), молярная. Расчеты по химическим формулам и уравнениям.

Раздел 6. Химия элементов

- 6.1. Галогены. Общая характеристика подгруппы. Возможные степени окисления. Особенности фтора. Получение хлора в промышленности. Галогеноводороды. Галогениды. Кислородсодержащие соединения хлора.
- 6.2. Кислород. Химические и физические свойства. Аллотропия. Круговорот кислорода в природе.
- 6.3. Сера. Сероводород, сульфиды. Оксиды серы (IV) и (VI). Сернистая и серная кислоты и их соли.
- 6.4. Азот. Аммиак, его получение и применение, соли аммония. Оксиды азота. Азотистая и азотная кислоты и их соли.
- 6.5. Фосфор. Оксид фосфора (V). Орто-, мета- и дифосфорная (пирофосфорная) кислоты. Ортофосфаты. Минеральные удобрения.
- 6.6. Металлы. Общая характеристика. Электрохимический ряд напряжений. Способы получения металлов.
- 6.7. Щелочные металлы. Оксиды, пероксиды, гидроксиды и соли щелочных металлов. Щелочноземельные металлы: их оксиды, гидроксиды и соли. Алюминий. Оксид, гидроксид и соли алюминия. Комплексные соединения алюминия.
- 6.8. Хром. Оксиды хрома (III) и (VI). Гидроксид и соли хрома (III). Хроматы и дихроматы (VI).
- 6.9. Железо. Оксиды железа (II) и (III). Гидроксиды и соли железа (II) и (III). Сплавы железа чугун и сталь.

Раздел 7. Химические реакции и закономерности их протекания

- 8.1. Классификация химических реакций в неорганической и органической химии. Закономерности протекания химических реакций. Термохимические уравнения. Расчеты по термохимическим уравнениям.
- 8.2. Скорость реакции, ее зависимость от различных факторов. Закон действующих масс. Энергия активации. Катализ и катализаторы.
- 8.3. Обратимость реакций. Химическое равновесие. Смещение равновесия под действием различных факторов. Принцип Ле-Шателье.
- 8.4. Реакции ионного обмена в водных растворах. Гидролиз неорганических и органических соединений. Среда водных факторов: кислая, нейтральная, щелочная. Водородный показатель (pH раствора).
- 8.5. Окислительно-восстановительные реакции. Методы электронного и электронно-ионного баланса. Важнейшие окислители и восстановители. Ряд стандартных электродных потенциалов.
- 8.6. Генетическая связь между классами неорганических и органических соединений.
- 8.7. Реакции полимеризации и поликонденсации.

Раздел 8. Органическая химия

7.1. Структурная теория — основа органической химии. Углеродный скелет. Радикал. Функциональная группа. Гомологи и гомологический ряд. Изомерия: структурная (углеродного скелета, положения кратной связи, функциональной группы, межклассовая) и пространственная (цис-транс). Типы связей в молекулах органических веществ (сигма-и пи-связи). Ионный и радикальный механизмы химических превращений в органической химии.

- 7.2. Предельные углеводороды. Алканы, гомологический ряд, их электронное и пространственное строение (-sp3- гибридизация). Физические и химические свойства предельных углеводородов. Циклоалканы.
- 7.3. Непредельные углеводороды, их номенклатура. Гомологический ряд этиленовых углеводородов, двойная связь, sp^2 гибридизация. Химические свойства алкенов. Ацетилен, тройная связь, -sp- гибридизация. Гомологический ряд алкинов, их химические свойства и получение.
- 7.4. Ароматические углеводороды (арены). Бензол и его гомологи. Реакции ароматической системы и углеводородного радикала. Ориентирующее действие заместителей в бензольном кольце (I и II рода).
- 7.5. Природные источники углеводородов. Нефть, природный газ и попутные нефтяные газы, уголь. Фракционная перегонка нефти. Крекинг. Ароматизация нефтепродуктов. Охрана окружающей среды при нефтепереработке.
- 7.6. Спирты одно- и многоатомные. Первичные, вторичные и третичные спирты. Номенклатура, строение, изомерия. Химические свойства спиртов. Простые эфиры. Фенол, его строение, физические и химические свойства.
- 7.7. Карбоновые кислоты. Предельные, непредельные и ароматические кислоты. Физические и химические свойства карбоновых кислот. Уксусная, пальмитиновая, стеариновая, олеиновая кислоты. Получение и применение карбоновых кислот.
- 7.9. Сложные эфиры. Жиры. Строение, получение реакций этерификации, химические свойства. Жиры в природе, их строение и свойства.
- 7.10. Углеводы. Глюкоза, ее строение, химические свойства, роль в природе. Сахароза, ее гидролиз. Крахмал и целлюлоза, их строение, химические свойства, роль в природе. Понятие об искусственных волокнах.
- 7.11. Амины. Алифатические и ароматические амины, их строение и химические свойства. Анилин, его получение из нитробензола. Аминокислоты. Природные альфааминокислоты.
- 7.12. Белки. Нуклеиновые кислоты. Строение, структура и свойства белков. Нуклеиновые кислоты, строение нуклеотидов. Роль нуклеиновых кислот в жизнедеятельности клетки.

Основная и дополнительная литература

Основная

- 1. Базарнова Ю.Г., Панкина И.А. Химия: пособие для поступающих в СПбПУ. СПб.: ПОЛИТЕХ-ПРЕСС, 2019. 130 с.
- 3. Химия. Основы общей химии. 11 класс: учебник для общеобразовательных учреждений с приложением на электронном носителе: базовый уровень / Γ . Е. Рудзитис, Φ . Γ . Фельдман. 14-е изд. М.: Просвещение, 2012.-159 с.
- 4. Габриелян О.С Химия 10 класс (базовый уровень). М. Дрофа, 2011.
- 5. Габриелян О.С., Маскаев Ф.Н., Пономарев С.Ю., Теренин В.И. Химия 10 класс. Профильный уровень: учебник для общеобразовательных учреждений. М. Дрофа, 2010.
- 6. Хомченко И. Г. Решение задач по химии. М.: РИА «Новая волна»: Издатель Умеренков, 2010. 256 с.
- 7. Медведев Ю.Н. ЕГЭ. Химия. Типовые тестовые задания. М. Экзамен, 2011

- 8. Сдам ГИА: решу ЕГЭ: [Электронный ресурс]. URL: https://chemege.sdamgia.ru/test?id=5681379 (Дата обращения 15.09.2022).
- 9. ФГБНУ «Федеральный институт педагогических измерений»: [Электронный ресурс]. URL: https://fipi.ru/ (Дата обращения 15.09.2022).
- 10. Интенсивная подготовка к ЕГЭ. Химия. Методические материалы. М.: Эксмо, 2008.

Дополнительная

- 1. Габриелян О.С. Общая химия в тестах, задачах, упражнениях. 10 класс. М. Дрофа, 2003.
- 2. Габриелян О.С., Остроумов И.Г. Изучаем химию в 9 класс. М.: Блик и К., 2003.
- 3. Кузьменко Н.Е., Еремин В.В., Попков В.А. Начала химии. М. Экзамен, 2000.
- 4. Хомченко. Г.П. Химия для поступающих в ВУЗы. М.: Просвещение, 2001.
- 5. Отличник ЕГЭ. Химия. Решение сложных задач / под.ред. А.А. Кавериной. М.: Интелект—Центр, 2010.
- 6. А.С.Егоров. Весь ЕГЭ от А до С. Химия.11 класс. Издательство Феникс, 2010
- 7. Янклович А.И. Химия: В помощь выпускнику школы и абитуриенту СПБ.: «Паритет»;1999. 256 с. (Серия «Экзамены без проблем»)
- 8. Химия. Пособие репетитор для поступающих в вузы// 2 —е изд., перераб. и доп- Ростов H/H: из-во «Феникс», 1999. 768 с.
- 9. Габриелян О.С. 11класс. Профильный уровень: учеб.для общеобразоват. Учреждений. -М.: Дрофа, 2009. 398 с.
- 10. Габриелян О.С. Химия. 11 класс: контрольные и проверочные работы к учебнику О.С. Габриеляна, Г.Г. Лысовой «Химия .11». М.: Дрофа, 2006. 176 с.
- 11. Маршанова Г.Л.500 задач по химии. Пособие по общей и неорганической химии для учащихся 8-11 классов. М.: «Издат-школа», 1998

Fragamobe Tr

СОСТАВИТЕЛИ:

Директор

Высшей школы биотехнологий и пищевых производств

Доцент Высшей школы биотехнологий и пищевых производств Базарнова Ю.Г.

Панкина И.А.